

Future sensing for ADAS and HAD automotive systems

Dr. Jürgen Hasch

Corporate Research and Advance Development Robert Bosch GmbH

Outline

- □ Motivation
- □ Roadmap
- □ Surround Sensing
- □ Sensor Types
- □ Radar Sensors
- □ Sensor Simulation
- ☐ Conclusion

Motivation

Paths to the Car of the Future

Vision

https://www.youtube.com/watch?v=FnTKm5XR3M4

Vision

Automated and Connected – Social Benefits

Safety

Technologies for an intelligent and forward-thinking vehicle

→ Injury and accident-free driving

Traffic Management

Reduced traffic jams and waiting time at intersections and lights

→ Relaxed driving even in dense traffic

Demographics

Reduced driver burden

→ Allow a variety of age ranges to be mobile

Networked Society

Vehicle as part of the driver's connected life

→ Time on the road becomes more productive

Clean Technology

Synchronizes traffic flow

→ Improved fuel economy

Roadmap

Development steps to automated driving

Degree of automation

Sensor-data fusion

Sensor-data fusion + map

ACC/lane keeping support

Only longitudinal or lateral control

Integrated cruise assist

Partially automated longitudinal and lateral guidance in driving lane Speed range 0-130 km/h

Highway assist

Partially automated longitudinal and lateral guidance

Lane change after driver confirmation

Supervision of nearby traffic

Highway pilot

Highly automated longitudinal and lateral guidance with lane changing

Reliable environment recognition, including complex driving situations

No permanent supervision by driver

Auto pilot

Door-to-door commuting (e.g. to work) in urban traffic

Highest safety requirements

No supervision by driver

Series production

2017

2019

> 2020

> 2025

State of the Art: Driver Assistance

Prerequisites for Automated Driving

Sensor Set Requirements

360° surround view 3D-information (distance) Robust vs. environmental influences High range Long-range radar rear High availability Mid-range radar rear Redundancy Ultrasonic sensors Orthogonality Forward camera **Near-range cameras** Mid-range radar Long-range radar Maps Comm. IMU Lidar

Key Sensors

Video	Lidar 🔑	Radar	
Wavelength 400800 nm	Wavelength 905/1150 nm	Wavelength 3.8 mm	
Passive	Active	Active	
High angular resolution	High angular resolution	Low angular resolution	
Indirect distance and velocity	Direct distance, indirect velocity	Direct distance and velocity	
Dependent on lighting conditions	Difficulties in fog and rain	Robust in harsh conditions	

Camera-Based Computer Vision

- ☐ Street lane detection
- ☐ Traffic light detection, road signs
- ☐ Free space estimation

Reconstruction and Segmentation

☐ Object Detection and Classification (e.g. vehicles, persons)

Surround Sensing

Reliability Requirements

Timber transport may not be detected reliably by radar sensor

Low standing sun can fade the video sensor

Tunnel entrances can affect the radar and video sensors

Radar Sensor Evolution

From simple detection to scene imaging

Fully Automated Driving (2025ff)

Picture source: Bosch

Radar view

- max. 30 targets
- Typ. one reflection per target
- poor resolution
- good distance and speed info

Radar Sensor Evolution

Achieving High Resolution

Distance

 Resolution depends on modulation bandwidth B:

$$\Delta r = \frac{c_0}{2B}$$

Limit is given by regulation:
 4 GHz or 3.75 cm

Velocity

- Fully utilize measuremen time of $\approx 20 ms$ to get best resolution
- Use of Micro-Doppler for further classification

∆r ∡

Radar Sensor Evolution

Achieving High Resolution Azimuth and Elevation

angle resolution

 Depends on antenna aperture size:

$$\Delta \varphi = 1.22 \frac{\lambda}{d_x}^*$$

$$\Delta\theta = 1.22 \frac{\lambda}{d_{\rm v}}$$

 Aperture area is limited due to sensor size constraints and the need to process a high number of channels

Antenna dimensions

^{*} Rayleigh criterion for angular resolution

Imaging Radar

Imaging Radar

- ☐ Experimental Radar prototype with 8 transmitters and 16 receivers
- ☐ 77 GHz operation
- □ Realtime signal processing

Imaging Radar

MIMO Chirp Sequence Data Rate Estimation

Case study:

Parameter	Value
Number of transmit channels M	8
Number of receive channels N	8
Number of samples per frequency ramp K	1024
Number of consecutive ramps L	1024
Number of quantization bits Q	14bit
Sampling frequency f_s	250MHz
Resulting data rate R_{MIMO}	28Gbit/s
Resulting data amount per chirp sequence $D_{CS,MIMO}$	117MByte

- ► Huge amount of raw data per cycle (~100 MByte)
- ► Cycle times of 50 ms (20Hz) required

Powerful processing unit becomes necessary Even for prototyping

Typical System Design Parameters for OFDM

- ☐ High AD/DA converter bandwidth > 2 GHz
- ☐ High data rate for signal processing > 50 GBit/s

	@77 GHz	Description
f_c	$77\mathrm{GHz}$	Carrier
N	4096	Number of subcarriers
Δf	$285\mathrm{kHz}$	Carrier spacing
$T_{m p}$	$0.66\mathrm{\mu s}$	Cyclic prefix duration
T	$3.51\mathrm{\mu s}$	Symbol duration
$T_{ m OFDM}$	$4.17\mathrm{\mu s}$	OFDM Symbol duration: $T + T_p$
B	$1.12\mathrm{GHz}$	Bandwidth $B = N \cdot \Delta f$
M	1024	Number of observed consecutive OFDM symbols
$T_{ m obs}$	$3.6\mathrm{ms}$	Observation Time $T_{\text{obs}} = M \cdot T_{\text{OFDM}}$
ΔR	$0.13\mathrm{m}$	Range resolution
Δv_r	$0.45\mathrm{m/s}$	Doppler resolution
$R_{ m max}$	$100\mathrm{m}$	Maximum range
$v_{r,\mathrm{max}}$	$\pm 55.6\mathrm{m/s}$	Maximum Doppler
$R_{ m unamb}$	$526\mathrm{m}$	Maximum unambiguous range
$v_{r,\mathrm{unamb}}$	$\pm 233\mathrm{m/s}$	Maximum unambiguous Doppler

Stepped OFDM Modulation Approach

	Chirp	OFDM	Stepped OFDM
Signal Gen.	+	-	+
AD/DA	+	-	+
Multiplexing	-	+	+
Interference	-	+	+

- ☐ Generate smaller-bandwidth subsymbols
- ☐ Step through complete bandwidth
- ☐ Reassemble stepped subsymbols to full symbols
- ☐ Reduced sampling and processing requirements

Source: B. Schweizer, C. Knill, D. Schindler and C. Waldschmidt "Stepped-Carrier OFDM-Radar Processing Scheme to Retrieve High-Resolution Range-Velocity Profile at Low Sampling Rate"

Verification of stepped OFDM approach

- □ 70 GHz CMOS radar frontend using 2 transmitters,4 receivers
- ☐ Test setup using measurement equipment
- ☐ Comparison of stepped vs. non-stepped operation:

- ☐ Sensor models allow virtual test and validation of Automated Driving Functions
- Modelling of virtual driving scenarios, including difficult environmental conditions (nighttime, fog, rain)

Virtual street model

- ☐ Virtual models for Video, Lidar and Radar sense the environment.

 Key sensor parameters included in model, e.g.
 - Radar: Antenna diagram, path loss, angle/distance/velocity resolution
 - Camera: Weather conditions, time of day (light conditions)
 - Lidar: Number of scan layers, range, noise behavior

Simulation Framework for Radar, Lidar and Video sensors

Conclusions

Trends driving the car of the future are: Electrification **Automation** Connectivity Automated Driving requires a Sensor Set that provides accurate and reliable information about the environment Radar sensors will be a key sensor for robust environment perception Digital modulation schemes for will power the next generation of Radars Simulation, using accurate models of the sensor set, is a must for test and validation of autonomous driving

functions.

Acknowledgements

- □ Daniel Schindler
- □ Martin Kunert
- □ Thomas Glaser
- □ Helmut Schön
- ☐ Christian Perwass
- □ Public Funded Project "Pegasus"
- □ Public Funded Project "Things2Do"

