

Automotive Radar Technology Trends

Jürgen Hasch
Corporate Sector Research and Advance Development
Robert Bosch GmbH

Outline

- Radar Market
- Roadmap
- State of the Art
- Technology Trends
- Outlook
- Conclusion

Market Drivers

Legislation & Regulation

- EuroNCAP+ requires pedestrian projection from 2016 on
- NA NCAP[•] & JNCAP*: showing clear hints to ADAS[•], e.g. @ safecar.org
- EU: LDW^Δ & emergency brake assist mandatory for HDV*

Availability DA Functions

- Low Speed Active Braking and Collision Warning already standard in some cars
- Active Pedestrian protection
- Democratization of DA functions (availability in compact segment)

Consumer

- Consumer surveys indicating willingness to buy
- EuroNCAP⁺ advanced and consumer tests (e.g. ADAC^x) raise endconsumer awareness

Technology

- Radar and video dominating but no dedicated sensor concept yet as standard settled
- Need for sensor data fusion
- Cost/benefit ratio major focus

- ^x Active Driver Assistance System, ^{*} Allgemeiner Deutsche Automobil-Club
- North American New Car Assessment Program, *Japan New Car Assessment Program

⁺ European New Car Assessment Program, *Heavy Duty Vehicle, [△] Lane Departure Warning

Market

- 1 Mio. 77 GHz sensors shipped from 2000-2012
- 1 Mio. 77 GHz sensors shipped in 2013

State of the Art

LRR3 (2009)

MRR (2013)

MRR rear/corner (2014)

LRR4 (2015)

- LRR3: First SiGe chip at 77 GHz
- MRR: First 77 GHz sensor realized fully in SMD technology
- MRR rear/corner: First 77 GHz sensor for rear/corner operation and covered integration
- LRR4: Updated technology for lower cost, additional elevation information

Mid Range Radar (MRR)

Performance Data MRR

FMCW-Mode	Range	Accuracy	Separability
Range (m) (Object Type Vehicle)	(0)1*160	0.15	1.25
Relative Velocity (m/s)	-80 +30	0.09	0.7
Angle (Azimuth)	-22.5 (35°) +22.5 (35°)	0.5°1,5°	7.0°
Elevation (3dB)	-4.5°+4.5°	n.a.	n.a.

^{*} measurement down to 0m possible if relative velocity <-1m/s

Mid Range Radar

Block Diagram

Mid Range Radar

Radar PCB

Mid Range Radar

Connecting Minds. Exchanging Ideas.

Technology Trends

- Higher Frequencies
- Field of View
- Angle Information
 - Higher Performance
 - Azimuth and Elevation
- Packaging and Integration
- Covered Integration

Higher Operation Frequency IMS2015

Idea:

- Smaller size
- Higher angular resolution
- Higher velocity resolution

Reality?

Higher Operation Frequency IMS2015

Motorbike RCS Measurement*

Higher Operation Frequency IMS2015

Atmospheric attenuation not an issue up to 200 GHz:

Atmospheric attenuation $\alpha(f)$ according to ITU recommendations ITU-R P.676-7 and ITU-R P.838-3 Parameters:

T=300 K

p=1013 hPa

 ρ =20 g/m³ (high water vapour)

r= 50 mm/h (heavy rain)

• Receive power in Radar equation scales with square of wavelength: $P_{\rm RX} \sim \lambda^2$

Transistor Speed

Lot's of fast Silicon Technologies:

 Go to higher frequency or benefit from lower power / lower noise of faster transistors?

Source: [1]-[8]

Connecting Minds. Exchanging Ideas.

Frequency Regulation

Connecting Minds. Exchanging Ideas.

	24 GHz ISM	24 GHz UWB	76-77 GHz	79 GHz	122 GHz	< 240 GHz
Europe	EN 302 858	EN 302 288 ✓	EN 301 091	EN 302 264 ✓	EN 305 550 ✓	×
Japan	✓	✓	✓	✓	✓	×
US	✓	✓	✓	×	✓	*
Target separation	~150 cm	~10 cm	~75 cm	~7.5 cm	~30 cm	
Availability	Worldwide (w/o HK)	Industrial countries only	Worldwide (w/o India)	Europe/Japan /Australia/Chil e	Not for automotive	no
Comments	Limited resolution	Short range, sunset date in Europe (2018)	Long range band; 500 MHz BW limitation in	Marginal incumbent frequency users		VS.

JP

Frequency Regulation

Frequency Regulation

Current Status of Allocations at 79 GHz

Technology Trends

- Higher Frequencies
- Field of View
- Angle Information
 - Higher Performance
 - Azimuth and Elevation
- Packaging and Integration
- Covered Integration

Field of View

Sensors

- Front: Long Range Radar or Midrange Radar and Mono-Video or Stereo-Video
- Front/Side: Two MRR dual mode mounted in corner position 70°,
- Rear and Rear/Side: Two MRR dual mode mounted in corner position 45°

Field of View

Target Motion	Area	Shape FOV	Range	FOV
Longitudinal Far Field	Front		≥ 160 m (≤ 150 kph) ≥ 250 m (high speed)	16°
	Rear		≥ 70 m	16°
Longitudinal near field (cut-in/-out, overtake)	Blind Spot		Left&right side ≥ 3 m, ≥ 3 m to back	
	Extended Blind Spot		20 m • 20 m total area (5 lanes in total)	360°
Cross traffic	Front/Side		≥ 50 m	up to 240°
	Rear/Side		≥50 m	180°

Pedestrian Detection

- Wide Field of View
- High velocity resolution ≈ 0.1 m/s

Technology Trends

- Higher Frequencies
- Field of View
- Angle Information
 - Higher Performance
 - Azimuth and Elevation
- Packaging and Integration
- Covered Integration

Antenna System

	Dielectric Lens	Rotman Lens	Analog Beamforming	Digital Beamforming	Mechanical Scanner
Multiple beams	yes	yes	no	Yes	no
Beamforming	limited flexibility	limited flexibility	flexible	flexible	fixed
Losses in feed network	low	high	high	low	low
Area requirements	low	high	medium	medium	high
Effort in RF part	low	high	very high	low	medium
Effort in control and signal processing	low	low	high	high	medium

 Efficient use of antenna aperture for limited sensor size

Virtual Antenna Array:

- Flexible trade-off between # of receivers and transmitters
- Does not help in improving range, only angular resolution

Source: R.Feger, WFF, IMS 2014

Phased Array

 The addition of a transmit phased array allows high-gain antenna beams for different directions

Sparse Arrays

IMS2015

Angle information with high resolution using sparse arrays

Technology Trends

- Higher Frequencies
- Field of View
- Angle Information
 - Higher Performance
 - Azimuth and Elevation
- Modulation schemes
- Packaging and Integration
- Covered Integration

Packaging Technology: eWLB

 Standard PCB technology using RF substrate for antenna and millimeter-wave interconnects

eWLB package and PCB footprint

eWLB to PCB interconnect performance

Packaging Technology: eWLB

 Standard high-volume SMD package with additional redistribution layer and soldering balls

Packaging Technology

Separate RF and IF/DC signal components

Frontend Chips: MRR

- **IMS2015**
- Receiver

- Second generation of 77 GHz components
- Separate transmitter and receiver
- Single 3.3 V supply, < 2 W DC power
- SMD packaged, 6x6 mm
- Serial control interface
- Used in Bosch MRR

Transmitter

Source: Infineon

Radar SoC?

 Will there be a All-in-one Radar chip like in the smartphone area?

Source: Texas Instruments

Technology Trends

- Higher Frequencies
- Field of View
- Angle Information
 - Higher Performance
 - Azimuth and Elevation
- Packaging and Integration
- Covered Integration

Covered Integration

Covered Integration

Layer model for a typical coated fascia

Cross-section of a silver-metallic bumper

Covered Integration

IMS2015

Detection Range

Field of View 140 100 Lateral Distance in m

Without influence

Angular Estimation

With influence

Source: T.Binzer: Influence of Intra Vehicle Factors on Radar Performance, EuMW 2013

Outlook

- Operating frequencies > 100 GHz are not foreseen in the near future
- Radar see will see improvements in
 - Flexible field of view
 - Angle measurement in azimuth and elevation
 - Higher angular resolution
- Lower power and higher integration density using modern semiconductor technologies (is "Radar on a Chip" really becoming true ?)
- Covered integration is a key feature for car manufactures

Conclusion

- Strong increase in driver assistance functions based on radar sensors.
- There is still a lot of potential in radar sensing technology.
- Key is implementing new functionality at low cost.

References

- 1] J. J. Pekarik et al., "A 90nm SiGe BiCMOS technology for mm-wave and high-performance analog applications," in IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Sept 2014, pp. 92–95.
- [2] V. Jain et al., "Device and circuit performance of SiGe HBTs in 130nm BiCMOS process with fT/fMAX of 250/330 GHz," in IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Sept 2014, pp. 96–99.
- [3] H. Rucker et al., "A 0.13um SiGe BiCMOS Technology Featuring fT/fmax of 240/330 GHz and Gate Delays Below 3 ps," IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1678–1686, Sept 2010.
- [4] F. Dielacher, M. Tiebout, P. Singerl, and D. Seebacher, "Silicon technologies and circuits for RF and mm-wave applications," in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Aug 2014, pp. 1–5.
- [5] G. Avenier et al., "0.13 SiGe BiCMOS Technology Fully Dedicated to mm-Wave Applications," IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2312–2321, Sep. 2009.
- [6] P. Chevalier, "A 55 nm Triple Gate Oxide 9 Metal Layers SiGe BiCMOS Technology Featuring 320 GHz f T / 370 GHz f MAX HBT and High-Q Millimeter-Wave Passives," in International Electron Devices Meeting, 2015.
- [7] P. Hurwitz, S. Chaudhry, E. Preisler, R. Kanawati, and M. Racanelli, "Foundry technology for RF and high performance analog applications," in VLSI Technology, Systems and Application (VLSI-TSA), Proceedings of Technical Program 2014 International Symposium on, April 2014, pp. 1–4.
- [8] S. Shopov and S. P. Voinigescu, "Characterization of the High Frequency Performance of 28-nm UTBB FDSOI MOSFETs as a Function of Backgate Bias," in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), Oct 2014, pp. 1–4.

